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Flow into an arterial branch model
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Abstract. Arterial branches are found to be a major site for formation of arterial plaque. In this study, several
of the main parameters that influence the local flow into an arterial branch model are investigated. In particular,
the role of the local geometric parameters of the bifurcation on the overall flow is thought to be interesting.
How the changes in the bifurcation geometry influence the distribution of axial wall shear and pressure in the
model, is investigated. The major geometric factors influencing this flow are the bifurcation area ratio and angle.
The flow in a large number of geometric variations of the branch model is numerically simulated. The models
at several branch area ratios in the range of 04 <AR <2.0 are considered. In the above range of area ratios, a
range of branch opening half-angle of = / 25<0<m / 4 is also studied. The flow in the above models is calculated
for the inlet-flow Reynolds numbers of 250, 500, 1000, and 2000. The asymmetric mass flow into the branches
by imposing different exit pressures at the branch outlets is also investigated. Area ratio seems to have the larg-
est influence on the flow within the physiologically relevant range of the parameters considered. Increasing the
area ratio can lead to relatively large flow separation in the vicinity of the bifurcation region. At higher values
of the opening angle of the bifurcation, the possibility and severity of flow separation at the appropriate wall
location increases. Having asymmetric mass flow into different branches also increases the chance of separation
at the opening of the constricted branch. The relative influence of the convective acceleration of the flow, as rep-
resented by the value of the flow Reynolds number, is also investigated. The particular value of the area ratio
or bifurcation angle, necessary to initiate flow separation, is influenced by the Reynolds number of the incoming
flow in the mother tube. In particular, the influence of all these parameters on flow properties and their relative
importance is quantified. The relation between the influence of these parameters on the flow and the formation
of some vascular diseases reported in the literature, is also examined.
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1. Introduction

In the human cardiovascular system many vascular diseases are found in the vicinity of
vascular branches. Atherosclerosis is commonly found near regions of high curvature or
bifurcation of large and medium size arteries. The tendency for plaque to form around and
near the regions of vessel bifurcation is a well-known fact. Having the same general system-
atic risk factors for atheroma results in plaque formation around different arterial bifurca-
tions for different individuals. In carotid bifurcations, with identical general risk factors in
a given individual, we have asymmetry in the formation of carotid plaque. These seem to
indicate the importance of each bifurcation’s unique geometry in plaque formation. Hence,
we can hypothesize on the crucial role of local hemodynamic factors in plaque formation
and its local distribution. Local hemodynamic forces undergo large changes in the vicinity of
these regions due to the interaction of primary flow with the associated local secondary flow.
Fluid mechanical forces directly influence endothelial cell structure and function on the ves-
sel walls. The exact mechanisms of how the hemodynamic factors influence plaque formation
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and its further development are still subject to debate [1-5]. However, it is hypothesized that
low-wall-shear-stress regions and regions of high particle-residence time are locations of high
risk for vascular diseases. Hence, a better understanding of the hemodynamics of these local
regions using CFD is important.

There are many bifurcations in the arterial system with great variations in geometrical
parameters within each one. Lou and Yang [6] in an excellent review of the bifurcation flow
literature of that time summarize that the most important parameters influencing the flow
into a branch are bifurcation angle, area ratio, the local wall curvature of the bifurcation
region, and the flow waveform. They point out that the angle of aortic bifurcation, where
the aorta bifurcates into two common iliac arteries, can vary between 10° and 80°. Sharp
et al. [7] in a review of abdominal and pelvic arteriograms of 100 patients divided the patients
based on the relative level of the aortic bifurcation. In the 48 patients, whose aortic bifurca-
tions were at or lower than the fourth lumbar vertebral resulting in a higher average bifurca-
tion angle of 52°, only 7 patients (14%) suffered from occlusive disease. In the remaining 52
patients with the aortic bifurcation above the L4 level with an average bifurcation angle of
38°, 21 patients (40%) suffered from occlusive disease.

Karino and Goldsmith [8] in a set of careful flow visualizations studied the flow patterns
and “vortex formation” (separation) in a model T-junction. They varied the branching angle
and the side to main tube-diameter ratio. They found that the diameter ratio (a measure sim-
ilar to area ratio) is more influential on the flow. The effect of the branching angle on flow
separation in the main tube was much smaller. However, they reported an appreciable influ-
ence of the branching angle on side-tube separation.

Schulz and Rothwell [9] in a recent comprehensive study of natural variations in carotid
bifurcation anatomy reviewed 5395 angiograms from 3007 patients. Amongst many parame-
ters, they measured the following area ratios: internal to common carotid (ICA/CCA), exter-
nal to common carotid (ECA/CCA), and the bifurcation total area ratio (ICA + ECA)/CCA).
They found that the normal range of the bifurcation area ratio is between 0-38 and 1-28.
Bifurcation anatomy also showed no systematic difference in any of their calculated parame-
ters between left and right carotids within individuals. However, they reported considerable
asymmetry within individuals in regard to ipsilateral and contralateral bifurcations to the
stroke site. For example, they found that 42% of the patients had a side difference of >25%
in the total area ratio of the bifurcation.

Friedman et al. [10, 11] studied the side branches off of the left anterior descending cor-
onary artery of 15 angiographically lesion-free human hearts obtained from autopsy. They
found a strong positive correlation between intimal and medial thickening and large bifur-
cation angles. However they reported a weaker and more local correlation between the area
ratio at the bifurcation site and the medial thickening. They also suggested that large branch-
ing angles are associated with more asymmetric thickening.

Fisher and Fieman [12] investigated the arteriograms of 40 male patients with carotid
stenosis of less than 50%. They measured stenosis diameter, (ICA/CCA) area ratio, and bifur-
cation angle in all those cases. They found significant association between diameter steno-
sis asymmetry and (ICA/CCA) area-ratio asymmetry. However, there was no such association
between stenosis asymmetry and bifurcation angle asymmetry. Which seems to indicate that
area ratio is more important than bifurcation angle in carotid stenosis. Spelde ez al. [13] in a
post-mortem examination of 100 carotid bifurcations measured the total-area ratios. The cal-
culated mean value of the bifurcation area ratio for the 60 normal carotids was 1-47, and the
mean value for the 40 diseased bifurcation was 0-99. They also found no difference in the
mean values between right and left carotids. Perktold and Resch [14] studied the flow into a
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carotid bifurcation and showed that small variations in the curvature of the sinus wall can
change their results. Perktold er al. [15] further investigated the influence of the bifurcation
angle on the flow into a carotid bifurcation. They found that the flow separation occurred
over the major part of the cycle at larger angles, while at smaller angles it only occurred dur-
ing the systolic phase of the particular waveform they used.

Tadjfar et al. [16-18], using the direct simulation of the governing equations, discuss the
development of a finite-volume flow solver for the study of flow in the human cardiovascu-
lar system. This code was validated and verified by comparison with results of flows into
bends and other biological flows. Further, they studied the steady and pulsatile flow into a
45° branched tube. Smith and Jones [19] study the local theory of multi-branching in the pres-
ence of small pressure differences. Smith et al. [20] investigate the local-global theory for side
branching. Smith et al. [21] discuss the flow into various branching tubes by theoretical mod-
eling and direct numerical simulation. Tadjfar and Smith [22], by comparing the results of
the slender-flow theory with direct numerical simulation, investigate the flow inside a circular
cylinder that splits into two half cylinders at a bifurcation junction.

Here, we want to concentrate on the influence of the geometrical parameters: area ratio
and bifurcation angle on the flow into a model three-dimensional bifurcation. In order to
minimize the number of possible variations, we maintain daughter-tube symmetry in terms
of diameter and bifurcation angle. We can also study the influence of the convective accel-
eration on the flow by changing the inlet-flow Reynolds number. But, we avoid the influence
of the unsteady acceleration and the waveform shape by considering steady flow. We assume
the blood-vessel walls are rigid. The mother vessel of the branch is a circular tube that bifur-
cates into two daughter tubes of equal size. The mother tube opens in the middle into two
diverging daughter tubes of circular cross sections (see Figure 1). The flow in a large number
of geometric variations of our branch model is numerically simulated. The models at several
branch-area ratios, defined as the ratio of total cross-sectional area of the daughter tubes to
the cross-sectional area of the mother tube, in the range of 0-4 <AR <2-0 are considered. In
the above range of area ratios, we also create various versions within a range of branch open-
ing half-angle of w / 25<0<m / 4, defined as the angle between the axis of the mother tube
and that of any of the daughter tubes (they are the same for symmetric bifurcations studied
here). The flow in all the above models is calculated for the cases with the inlet-flow Reynolds
number of 500 and 1000. In some of the above models, the flow is also simulated for Re =250
and Re=2000. The influence of the area ratio, inlet-flow Reynolds number, branch-opening
half-angle, and exit-pressure asymmetry on the distribution of axial shear stress and pressure
along the branch walls and the formation of flow separation in the vicinity of the branch
bifurcation, is investigated.

2. Numerical method
It is assumed that the fluid is homogeneous, incompressible and Newtonian. The governing
equations are the 3-D incompressible, unsteady Navier-Stokes equations in the strong conser-

vative form. The equations are non-dimensionalized and written in a generalized curvilinear
coordinate system, such that:

a0 0 _ - _
/ Hgv 2 de+% (f-Qv,)-nas=o, (1)
V() 0T ot Jv S(t)

where f=(F+F,, G+G,, H+H,) and,



362 M. Tadjfar

Figure 1. Model of a 45°-Branched tube (6 =7/8) with AR = 1 on Grid3.
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In the preceding equations p is pressure, and (u, v, w) are the respective velocity components
in the physical Cartesian coordinate system: (X, Y, z). The Reynolds number of the flow is
defined based on the reference velocity and tube diameter as Re=UsD/v. Here, t denotes
the real physical time, t is the pseudo time, and B is the pseudo-compressibility coefficient.
V(t) is the time-varying volume of the cell. S(t) denotes the surface of the control volume,
and N is the outward unit normal vector at the surface of the control volume, where vg is the
local velocity of the moving control surface. Note that the term § associated with the pseudo
time is designed for an inner sub-iteration at each physical time step, and will vanish when
the divergence of velocity is driven to zero so as to satisfy the equation of continuity.

For a structured boundary-fitted computational coordinate system: (§, 1, ¢) and a cell-cen-
tered finite-volume formulation, we can write Equation (1) in a semi-discrete form for each
cell centered at point (i, j, k):

=0. 3)

a - - aq
St [VQJiji + Rijk+StViji (_q) =
ik

at at
Where the steady state residual is given by:
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The modified flux terms are defined as:
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The normal-area vector in the &-direction is:

Sﬁ = [ix’ iy’ iz] : (6)

In the above formulation the flow Strouhal number is defined as St=D / (Ugef trer). The phys-
ical time derivatives are differenced using the second-order trapezoidal implicit method, while
the first-order Euler implicit differencing is used on the pseudo-time derivatives. The inviscid
fluxes are differenced using third-order upwind implementation of Roe’s flux-difference split-
averaging technique. Second-order central differencing is used on the viscous fluxes. To maintain
second-order spatial accuracy a special treatment at the boundaries is required.

2.1. FLOW SOLVER

All the numerical simulations are achieved by using the fast, parallel, and time accurate solver
of Tadjfar et al. [16-18]. The solver is capable of dealing with moving boundaries and mov-
ing grids. It is designed to handle complex, three-dimensional vascular systems. The compu-
tational domain is divided into multiple-block subdomains. At each cross section the plane
is divided into twelve sub-zones to allow flexibility for handling complex geometries and, if
needed, appropriate parallel data partitioning. Accurately simulating a large three-dimensional
model of a patient’s vascular system requires high-speed hardware with large memory space. It
is now widely recognized that parallel processing is the platform for processing such systems.
Communication between the subdomains of the flow is implemented using a MPI message-
passing library. The code is capable of being implemented on both shared and/or distributed
memory architectures.

2.2. BOUNDARY CONDITIONS

At the inlet of the mother tube a fully developed Poiseuille flow is assumed for the velocities,
and the condition dss(P) =0 is imposed on the pressure, where S is the local streamwise direc-
tion along the centerline of each tube. We also define a local normal direction on the wall,
n, which is always normal to the local wall and defined inwardly positive towards the center
of the tubes. Both s and n are nondimensionalized by the main-tube diameter. At the outlet
of each daughter tube the pressure is prescribed as P =0, and for the velocities the condition
dss(U, v, w) =0 is imposed. Along the rigid walls the no-slip condition is assumed (U, v, w)=0.
All the dimensions are nondimensionalized by the mother-tube diameter, MD, and all the veloc-
ities are nondimensionalized by the mean (bulk) velocity of the inlet profile.

2.3. GRID INDEPENDENCE

Computational grids for each of the various cases considered are generated based on the branch
model chosen here. Three grids of different grid density and size were considered: (1) Gridl
extends 15 MD upstream and 10 MD downstream of the bifurcation in each daughter tube.
This grid comprises 55,230 cells. In the mother tube, we use a 42 x 51 x 15 grid, which implies
using 42 cells in the tube axial direction by 51 cells in the azimuthal direction and 15 cells in the
radial direction at each cross-section of the tube. Similarly, in each of the daughter tubes, we use
a 33 x 35 x 10 grid. Appropriate grid stretching near the walls in the radial direction and near
the bifurcation region in the axial direction is implemented. (2) Grid2 is a lower-density version
of Gridl with 41,280 cells. We use a 32 x 51 x 15 grid in the mother tube and a 24 x 35 x 10
grid in each of the daughter tubes. (3) Grid3 is a much shorter grid that extends only 5 MD
upstream and downstream from the bifurcation comprising 57,375 cells. For this high-density
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grid we use a 25 x 51 x 15 grid in the mother tube and in each of the daughter tubes. This grid
for the case with 6 =x/8 is shown in Figure 1.

All the simulation cases were repeated for both Gridl and Grid3 and some cases were also
tested with Grid2. The results were close in all cases for most of the flow, but for the peak
values occurring in a very small section of the walls very close to the bifurcation region. The
maximum difference in the peak values of the wall shear and wall pressure between all the
grids considered here was less than 6%. The centerline pressure along the mother tube (MT)
and left daughter tube (LDT) for the case of AR=1.0 and 6 =x/8 at Re=500 for all three
grids are shown in Figure 2a (The worst comparison location). The normal gradient of the
axial velocity, a measure of wall shear, running along a line from the center of the right wall
in the mother tube and along the center of the outer wall in the right daughter tube (RDT)
is shown in Figure 2b. Any of the three grids produces grid-independent numerical results. All
the charts presented here are based on the Gridl-simulation results and all the visualization
figures are presented on Grid3.

3. Flow into an arterial branch model

A systematic study of the flow into a three-dimensional model of an arterial branch is per-
formed. The flow into an arterial branch with various values of the total area ratio and the
opening angle of the bifurcation at several Reynolds numbers are considered. Due to the
enormity of the task, we limit this study to the case of symmetric bifurcations. However, we
solve over a full grid comprising the entire branch. Hence, we can investigate asymmetric exit
pressure at the branch outlets. We consider the role of the convective acceleration on the flow
as shown in different Reynolds-number simulations. But, the influence of the unsteady accel-
eration on this flow, as controlled by the shape and type of the flow waveform, is not consid-
ered here. All the computational results presented here are achieved by allowing the residual
on velocities to drop to 10710 and the residual on mass conservation drop to 10~7.

Several lines along the axial direction in the tubes are chosen to present the distribution
of flow variables. The MT centerline is defined as the centerline of the tube along the axial
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Figure 2a. Grid influence: pressure distribution along Figure 2b. Grid influence: Wall shear distribution

the centerline of the mother and the left daughter
tube for the case AR=1-0 and 6 =7/8 at Re=500.

along the right wall of the mother tube and outer
wall of the right daughter tube for the case AR=1.0
and 6 =m/8 at Re=500.
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MT top line

Mother Tube
MT right line
RDT inner line RDT outer line
Right Daughter Tube
Figure 3. Lines on the inner walls of the Mother Tube Figure 4. Streamwise velocity contours (AR =1-0 and
(MT) and Right Daughter Tube (RDT), where the 0 =n/8 at Re=1500) given in the mother tube at (a)
data are presented. inlet and (b) 0-1 MD to bifurcation, and in the daugh-

ter tubes at (c) 0-3MD, (d) 1 MD, (e) 2-5MD, and (f)
SMD (outlet of Grid3) respectively.

direction in the mother tube. The MT right line is defined as the line along the wall in the
middle of the right wall (3 o’clock looking into the tube from downstream, shown in Fig-
ure 3). The MT top line is defined as the line along the wall in the middle of the top wall (12
o’clock looking into the tube from downstream). The RDT centerline is defined as the cen-
terline of the tube along the axial direction in the right daughter tube. The RDT outer line
is defined as the line along the wall in the middle of the outer wall (3 o’clock looking into
the tube from downstream) which is the continuation on the MT right line into the RDT.
The RDT inner line is defined as the line along the wall in the middle of the inner wall (9
o’clock looking into the tube from downstream) which is the line in the middle of the new
dividing wall started after the bifurcation.

3.1. FLOW INTO A 45° BRANCH

First, we consider the flow for a case in the middle of our parametric range of a 45° bifurca-
tion (0 =x/8) with an area ratio, AR =1, as shown in Figure 1. This implies that the whole
flow in the mother tube will not see any flow expansion since the total cross-sectional area
remains constant through the bifurcation. In fact, there is a little flow acceleration due to the
formation of new boundary layers in the newly formed inner walls of the bifurcation in the
daughter tubes. The contour plots of streamwise velocity of the steady flow into this bifur-
cation at Re=500 are presented in Figure 4 (Grid3). The inlet velocity profile of a Poiseuille
flow is presented in Figure 4a. In the mother tube, near the bifurcation at 0-1 MD to the junc-
tion, we can see the influence of the oncoming bifurcation walls. The high-velocity core of
the flow is showing a double peak as if it is getting ready to divide into the daughter tubes
(Figure 4b). In the daughter tubes, near the entrance at 0-3 MD after the junction, the high-
momentum fluid core is pushed to the inner walls (towards the bifurcation center) of the tube
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(see Figure 4c). This is due to the position of the high-velocity fluid core in the mother tube.
This would result in a local region of high pressure and high wall shear stress at the inner
walls of the daughter tubes. The local high-pressure region interacts with the surrounding
boundary layers to set up the well-known secondary flow to take the fluid back towards the
outer side along the tube walls. Hence, the low momentum fluids near the outer walls are
pushed into the core of the daughter tubes. This can clearly be seen in Figure 4d, where the
streamwise velocity contours are presented at 1 MD after the junction.

Such secondary-flow patterns are typical of the flow at tube bends. However, in a branch
the secondary-flow pattern is enhanced. This is due to the position of the incoming high
momentum core of the mother tube, which is already located near the inner walls of the
daughter tubes prior to bifurcation. The influence of this secondary flow can be seen all the
way to the outlet of the daughter tubes. Figure 4e shows the streamwise velocity contours
at 2.5MD in the daughter tubes, where the formation of the typical crescent-shape contours
is evident. There is a lower velocity core in the middle of the tubes with the higher-velocity
fluids near the walls of the tube creating higher shear stresses at the wall. However, by the
action of viscous diffusion, the velocity gradients will gradually dissipate. This is clearly evi-
dent in the velocity contours at 5SMD (at the outlet of Grid3) in the daughter tubes presented
in Figure 4f. The same can be seen in the results for the longer Gridl, where the viscous
diffusion has further eroded the secondary flow by 10 MD at its outlet.

3.2. THE INFLUENCE OF BIFURCATION ANGLE

Here, we investigate the influence of the bifurcation angle on the flow. We consider a physio-
logically relevant range of branch opening half-angle of = / 25<0<m / 4 which corresponds to
the bifurcation angles of roughly 14° to 90°. To fix other parameters and concentrate on the
bifurcation angle only, we present data for the flow of the branches with AR =1 at Re =500.
Figure 5 presents the pressure distributions along the centerlines of MT and RDT at vari-
ous angles. The pressure drop is mostly linear except in the region from 1 MD upstream to
2MD downstream of the bifurcation. In the MT centerline, near the bifurcation, the pressure
rises due to the approaching stagnation region of the dividing surface. In the beginning of the
RDT centerline, the flow moves away from the vicinity of the stagnation region, in the flow
divider surface in between the two daughter tubes, and continues with the pressure drop. As
the branch half-angle is increased from /25 to 7 /4, the non-dimensional pressure at S=1 is
increased from 245 to 2-8, indicating a pressure increase of about 14% to adjust for the extra
losses due to the enhanced secondary flow patterns.

Figure 6 presents the normal gradient of the axial velocity, a measure of wall shear, along
the right lines of MT and their extension along the outer lines of RDT at various angles.
The velocity gradients are normalized by their fully developed values in a Poiseuille flow. The
entire domain is non-dimensionalized by the MT parameters, which results in a Poiseuille-flow
velocity gradient value of 1 in the mother tube and +/2 in the daughter tubes for the case with
AR =1. We can observe two emerging trends in this figure. In the outer wall of RDT, we can
see a tendency towards separation near the bifurcation region as 6 is increased. In fact, for
higher values of Re or AR there would be flow separation as will be shown later. Just before
the bifurcation region along the right wall of MT, as 6 is increased, we can see a gradual
increase in the peak value of the wall gradient from 1-12 for the case with 6 =m/25 to 1-58
for the case with 6 =m/4 (41% increase). There is a short upstream influence and the Poiseu-
ille flow still exists past the location at S=12. There is a narrowing of the upstream influence
at higher bifurcation angles, which we will say more about it later.
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Figure 5. Pressure distributions along the centerlines Figure 6. Axial wall shear distributions along the right
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Figure 7. Axial wall shear distributions along the Figure 8. Axial wall shear distributions along the top
inner wall of RDT for AR =1.0 at Re=500. wall of MT for AR =1.0 at Re =500.

Figure 7 gives the distribution of axial wall shear along the inner line of RDT. Immedi-
ately near the bifurcation region, there are high values of wall shear. For § =n/25 branch the
initial wall gradient is 84 (600% of the Poiseuille value), as 6 is increased this initial value
drops to 54 for the case with 6 =m /4. However, this initial peak drops faster for lower angles
as we move away from the bifurcation region, resulting in higher values of shear at higher
branch angle. The axial-wall-shear distributions along the top line of MT are presented in
Figure 8. Very close to the bifurcation, the wall shear values drop as 6 is increased. This
leads to separation at the top wall of MT, just before bifurcation, for the case with 6 =x/4
even at this Reynolds number (Re=500). There is also a second trough in the shear value
further upstream and a tendency for the spreading of the upstream influence as branch angle
is reduced. This counter-intuitive behavior is probably due to the particular way of smoothing
(geometric transition) from MT to the daughter tubes, that is chosen here and is case specific.
We will say about this more in the discussion section.
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Figure 9. Pressure distributions along the centerlines Figure 10. Axial wall shear distributions along the
of MT and RDT for 6 =7/8 and AR=1.0. right wall of MT and the outer wall of RDT for

6=m/8 and AR=1-3.
3.3. THE INFLUENCE OF REYNOLDS NUMBER

We can study the role of the convective acceleration on the flow by varying the flow Rey-
nolds number. This is another important factor that influences the formation of separation
near the branching region. By keeping the geometry and the inlet profile the same, we see
that increasing the flow Reynolds number is equivalent to lowering the viscosity of the fluid.
This fact should be kept in mind when looking at velocity-gradient data presented here. To
compare the actual shear-stress values, one must take into consideration the implied changes
in viscosity coefficient at different Reynolds numbers.

Pressure distributions along the centerlines of MT and RDT at different Reynolds num-
bers for the cases with 6 =n/8 and AR=1.0 are given in Figure 9. The pressure gradient
is mostly linear except near the bifurcation. As Re is decreased from 2000 to 250, the non-
dimensional pressure at S=1 goes from 0-86 to 4-78, indicating a pressure increase of about
560%. The value of the peak in the pressure distribution in the mother tube, near the stag-
nation region of the dividing surface, goes from 1-41 to 3-96 (280% increase).

Figure 10 presents the axial wall shear along the right lines of MT and their extension along
the outer lines of RDT at several Reynolds numbers for the cases with 6 =7/8 and AR =1-3.
As mentioned previously, at higher values of Re there is a region of back flow (separation) at
the bifurcation area. The upstream influence of Reynolds number in the peak values of wall
shear prior to the bifurcation is minimal. The size of the separation region and the strength of
the back flow increase with the Reynolds number. Hence, a much stronger secondary flow is
created as Re is increased. The viscous damping of the induced secondary flow and its effect
on the main flow require a much longer distance at higher Re values. The distributions of axial
wall-shear along the inner line of RDT are given in Figure 11. Immediately after the bifurcation
there are high values of wall shear, which drops rapidly as the flow moves downstream. For the
flow at Re =250, we can see a return to the fully developed profile and the non-dimensional
shear value of v/2/(1-3)%2 in the daughter tubes for the case with AR =1-3.

3.4. THE INFLUENCE OF AREA RATIO AR

Another important geometric factor that influences the flow in a branch is the area ratio.
Pressure distributions along the centerlines of MT and RDT at several area ratio values are
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Figure 11. Axial wall shear distributions along the Figure 12. Pressure distributions along the centerlines
inner wall of RDT for 6 =7/8 and AR =1-3. of MT and RDT for 6 =n/8 and Re=500.

presented in Figure 12 for the cases with 6 =x/8 and Re=500. The pressure gradient is
mostly linear except near the bifurcation. As AR is increased from 04 to 2-0, the non-dimen-
sional pressure at S=1 drops nonlinearly from 152 to 0.98. Figure 13 presents the axial wall
shear along the right lines of MT and their extensions along the outer lines of RDT at sev-
eral values of the area ratio for the cases with 6 =x/8 and Re=1000. The upstream influence
of the bifurcation is limited to less than two diameters in the MT. For higher values of AR,
prior to the bifurcation in the mother vessel, the wall-shear values drop to an eventual back-
flow region. For the case with AR =2.0, this separation region is fairly large (almost 3 MD in
length). For the cases with area ratios that are low enough not to cause a flow separation, the
wall shear initially increases in the MT to a peak value prior to the entrance of the daughter
vessel. The peak shear values are 1.5, 3, and 7 times the fully developed values for the cases
with AR =10, 0-7, and 0-4, respectively. For the case with AR =0-4, we can see a second wall-
shear peak value in the outer walls of the daughter vessel. All the wall-shear values eventually
reach their fully developed values further downstream in the daughter vessels as the viscous
diffusion damps out the effect of the secondary flow on the velocity profiles.

The axial wall-shear distributions along the top line of MT at different AR values for the
cases with 6 =7/8 and Re=1000 are presented in Figure 14. There seems to be an initial drop,
followed by a peak and a final drop in the shear values just prior to the bifurcation. The wall-
shear values in the initial drop get lower, and the trough location moves downstream as AR is
reduced. There exists a back-flow region, 1 MD in length and located at s=14-4, for the case
with AR =0-7. The peak values in the wall shear also get higher, and the peak value location
moves downstream as AR is reduced. The peak shear values are 1-6 and 2-9 times the fully
developed values for the cases with AR =1-0, 0-7, respectively. The wall-shear values at the final
drop location, s=15, go from almost zero to 1-3 as AR is reduced from 2-0 to 0-7.

3.5. THE BACK-FLOW-REGION SHAPE

The separation region is of particular importance in a study on arterial hemodynamics. These
areas are generally associated with low-momentum fluid particles. Hence, they are resulting
in low-wall-shear-stress regions and large particle-residence times. The definition of separa-
tion regions in three-dimensional flows is complex. It involves defining singular points and
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Figure 13. Axial wall shear distributions along the
right wall of MT and the outer wall of RDT for
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Figure 14. Axial wall shear distributions along the top
wall of MT for 6§ =7x/8 at Re=1000.

6§ =m/8 and Re=1000.

the limiting streamlines in the flow field (see Tobak and Peake [23]). Here, we look at the back-
flow regions as a subset and indication of the complexity of the three-dimensional separation
regions involved. In Figure 15, we can see the influence of the area ratio on the shape of the
back-flow region. In the case with Re =1000 at the area ratio of AR =1-3 (Figure 15a) we can
see a small region of back flow is present on the outer wall of the daughter branches. Increasing
the area ratio to AR =1.6 and AR =2.0, enlarges the back-flow region significantly, as can be
seen in Figures 15b and 15c, respectively. The shape of the back-flow region is influenced by the
magnitude of the Reynolds number of the flow. However, the influence of the Reynolds number
is not as significant as the area ratio on the size of the separation region.

3.6. THE INFLUENCE OF UNEQUAL EXIT PRESSURE AT THE DAUGHTER TUBES

One can study the effect of the gradual closing of one of the daughter tubes by increasing the
value of the imposed exit pressure at that tube. This would be a model of having plaque for-
mation constricting the flow in one branch and forcing the majority of the flow into the other
branch. Here, we first close one of the tubes at the end. This would provide the exit pressure
that would close that tube. In fact, we get identical flows, whether we impose no exit flow
or the corresponding exit pressure as a boundary condition. For the case with 6 =x/8 and
AR =1-0 at Re =500, the non-dimensional outlet pressure value of P=6-350059 would close
the RDT completely (see Figure 16). We can see a linear drop in the RDT mass flow rate as
the exit pressure is increased linearly, as expected.

In Figure 17, we present the axial wall shear along the right lines of MT and their exten-
sion along the outer lines of RDT for the case presented in Figure 16. As the RDT is being
gradually closed, the typical wiggle-shape distribution of wall shear of a peak followed by a
trough at the beginning of the daughter tube is changed. We no longer see the peak and only
the trough keeps getting deeper till we have separation on the outer wall at the entrance of
RDT. As the RDT is being closed, the difference in mass flow is being forced to go through
LDT. In Figure 18, the axial wall shear along the left lines of MT and their extension along
the outer lines of LDT are presented. Here the opposite trend is happening; the peak in the
wall shear keeps getting stronger, while the trough is disappearing. The peak value of the nor-
mal gradient of the axial velocity is 11.7 at a 50-50 mass-flow distribution between the RDT
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Figure 15. Streamwise velocity surfaces (backflow part), Figure 16. Percent of the total mass flow rate through
looking down into the left daughter tube at Re = 1000 the RDT due to increases. In the RDT exit pressure
(a) AR=13, (b) AR=1-6, and (c) AR =20 (Grid3). for 6 =n/8, and AR=1-0 at Re=500.
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and LDT. Once the RDT is closed, this peak value on the outer wall of the entrance to LDT
reaches 30-7 (262% increase).

4. Discussion

We have investigated the steady flow into an arterial branch model in detail. In particular,
we were interested in the role of the local geometric parameters of the bifurcation on the
overall flow. Specifically, we studied how the changes in the bifurcation geometry influence
the distribution of axial wall shear and pressure in the model. The patterns that developed
were discussed at length in the sections presented previously. However, we shall summarize
and make further comments below, followed by some discussion of our results in relation to
the clinical measurements and other works that were referred to in the introduction.
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The high-velocity core of the incoming profile has to turn into the daughter tubes in advance
of the approaching the stagnation region of the new dividing surface. In general, such upstream
influences are short and abrupt, with a lot of the local details to be governed by the local wall
curvatures and geometry. The pressure distribution is mostly dictated by the local geometry of
the mother and daughter vessels (linear in our straight tube segments). The influence of the
bifurcation on pressure is limited to mostly within 2 diameters upstream and downstream of
the bifurcation dividing surfaces. The upstream influence of the bifurcation geometry on the
velocity profiles and wall-shear values is also limited to within 2 diameters. However, the down-
stream dissipation of the effects of the induced secondary flow, created at the bifurcation, on the
velocity profiles and the wall-shear distributions may last much longer and is strongly influenced
by the Reynolds number of the incoming flow. Regions of flow separation, associated with slow
flow, are of high interest in vascular-hemodynamics research. Two locations in the mother tube,
middle of the top and bottom walls prior to the bifurcation, are prone to separation. This is due
to the existence of the stagnation regions of the dividing surface that initiates the newly formed
inner walls of the daughter tubes. The outer walls of the daughter vessels at their entrance and
their continuations into the mother vessel are also separation-prone.

As the opening angle of the bifurcation is increased, the possibility and severity of flow sep-
aration at the appropriate wall location increases. Increasing the bifurcation angle from 14° to
90°, for the cases with AR =1 and Re =500, resulted in a 14% increase in the peak-pressure
value near the entrance of the MT (Figure 5). Similarly, the peak value of the wall shear on
the right wall of MT increased by 41% (Figure 6). At this Reynolds number there was no flow
separation in the outer walls of the daughter tubes and a small separation region was observed
in the top and bottom walls of MT only for the highest bifurcation angle considered. The
local details of the wall-shear distributions, two troughs and one peak, on the top wall of MT
presented in Figure 8 are probably due to the local smoothing of the wall curvatures as the
mother and daughter vessels join. This is completely different from the observation of Tadjfar
and Smith [22] (in their Figure 11). They reported only one trough just prior to the bifurcation
in the wall-shear distribution, which progressively increased in magnitude as the opening angle
is widened. In their simplified model, a straight cylinder that opens into two half cylinders with
sharp corners, they have avoided wall-curvature smoothing altogether.

In Figure 7, the values of the axial wall shear along the inner wall of RDT approach the
fully developed flow value asymptotically. At the end of our computational domain the influ-
ence of the secondary flow has not been damped out yet for all the branch angles considered
for that Reynolds number. Interestingly, the initial peak at the entrance to RDT drops as 6
is increased. This is due to the fact, that the flow has not yet turned far from the wall at the
entrance and there is a large component of the normal velocity gradient as well as the axial
wall gradient in the normal direction. Within a short distance, less than half a diameter, the
lines cross and we have higher axial-shear values for higher-bifurcation-angle cases.

For higher values of the incoming-flow Reynolds number, there is a higher possibility
of formation of a separation region near the bifurcation and for the size of the separation
region to be larger. Increasing the Reynolds number from 250 to 2000, for the case with
0 =n/8 and AR = 1.0, resulted in a 560% drop in the pressure value at the entrance of MT
(Figure 9). This is less than a linear decrease of 800% as one would get for flow in a straight
tube (3s(P) =—32/Re). This difference is probably caused by the extra losses due to the increase in
the strength of the induced secondary flow. Similarly, for the case with 6 =x/8 and AR =1-3, the
non-dimensional pressure at S=1 goes from 3-28 to 0-4 (820% drop). However, here the area ratio
isno longer equal to unity and there is an overall increase in the cross-sectional area in the daughter
tubes. In Figure 11, as we move away from the bifurcation the wall-shear values drop rapidly in the
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inner walls of RDT. However, this drop is delayed for higher values of Re due to the narrowing of
the daughter tubes at their inlet because of the local separation there. At Re =250, the peak shear
value is 6 and its location is at the entrance of the RDT, s= 15, but at Re =2000 the peak value is
7-2 (20% increase) and it is located further downstream at s=15-3.

Area ratio seems to have the largest influence on the flow within the physiologically rel-
evant range of the parameters considered. Increasing the area ratio can lead to relatively
large flow separation on the outer walls of RDT in the vicinity of the bifurcation region. As
the area ratio is increased from 0-4 to 2.0, the inlet pressure drops by 1550% for the case
with 6 =7/8 and Re =500 (Figure 12). In fact, the relative pressure drop is almost inversely
proportional to the square of the respective AR ratios, as one would expect from a simple
control-volume analysis. The conservation of mass would require the average velocity ratio to
be inversely proportional to the area ratio and the conservation of energy would force a square
relationship between pressure ratio and the average velocity ratio in a frictionless ideal flow.

For higher values of the area ratio, there is no or a very small rise from the Poiseuille val-
ues in the axial wall shear before dropping to negative values (back flow) prior to the bifur-
cation junction on the right walls of MT (Figure 13). For the case with AR =0-4, there is a
small initial drop in the value of wall shear that has moved further upstream and no upstream
separation region exists. The peak value in the wall shear reaches 7-5 before sharply dropping
to —1-1 at s=15. This trend change in the wall-shear behavior on the top wall of MT prior
to bifurcation requires further investigation. In Figure 15, the projected cross-sectional area of
the back-flow regions in the LDT and the projected span of the back flow regions in RDT
are presented for three different area ratios. The shape of the cross-section of the back-flow
region as shown in this figure is very similar to the cross-sections of plaque formation in dis-
sected diseased arteries. The resemblance of these shapes is amazing, considering the simple
steady flow considered here.

In Figure 17, at this area ratio, AR =1-0, and branch angle, 6 =x/8, It is not possible to
see flow separation for physically realizable Reynolds numbers for a symmetric distribution of
mass-flow rate of 50-50 between RDT and LDT. However, once the mass-flow distribution is
reduced to 30-70 between RDT and LDT due to some constriction further downstream of the
RDT, we can see flow separation at the outer wall of the RDT near the branch splitting point
and the beginning of RDT. This indicates that asymmetry and local detail of flow geometry
can cause separations where one would not expect these from overall geometric parameters.
The increasing of the mass-flow rate into the LDT causes an almost three-fold increase in the
axial wall shear upstream of the branch at the end of the left wall of MT (see Figure 18). It
is more than the doubling one would expect from simply doubling the mass-flow rate. This is
an indication of the core of the flow being pushed closer to the left wall and, hence, creating
higher normal gradient of the axial velocity there.

Our observations are in full agreement with the conclusions of Karino and Goldsmith [§]
that the area ratio has a stronger influence on the flow than the bifurcation angle. However,
whereas theirs was based on observation of flow-visualization patterns of side tubes branch-
ing from a main tube, here, we have quantitative values to compare the relative importance
of each effect on a Y-shaped branch. The data of Sharp et al. [7] on occlusive disease seems
to indicate a correlation between higher position and acute angles in aortic bifurcation and
the disease. One has to be very careful to compare CFD results with arterial-disease data.
There are many factors we have not included in our analysis, the inlet-wave form, wave-
reflection-corrected unsteady outlet-boundary conditions, wall dynamics, wall elasticity, wall-
material properties, etc. Any of these factors alone can change the flow. However, one can
make some generalized observations with caution. We can not find any explanation for their
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observation. We need perhaps to include other factors in our analysis or we need to have
more data on the area ratio of their cases as well. We seem to be in agreement with the obser-
vations of Friedman et al. [10, 11] on the positive correlation between large bifurcation angles
and the possibility of plaque growth near the bifurcation and its location. Our results support
the findings of Fisher and Fieman [12] that area ratio is a more influential parameter than the
bifurcation angle on the formation of carotid stenosis.
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